Quantcast
Channel: DR ANTHONY MELVIN CRASTO Ph.D – New Drug Approvals
Viewing all articles
Browse latest Browse all 1640

9-(5-oxotetrahydrofuran-2-yl)nonanoic acid methyl ester

$
0
0

 

9-(5-Oxotetrahydrofuran-2-yl)nonanoic acid methyl ester

353
Name 9-(5-Oxotetrahydrofuran-2-yl)nonanoic acid methyl ester
Synonyms
Name in Chemical Abstracts 2-Furannonanoic acid, tetrahydro-5-oxo-, methyl ester
CAS No 22623-86-5
Molecular formula C14H24O4
Molecular mass 256.35
SMILES code O=C1OC(CC1)CCCCCCCCC(=O)OC

 

1H NMR

1H NMR

1H-NMR: 9-(5-Oxotetrahydrofuran-2-yl)nonanoic acid methyl ester
500 MHz, CDCl3
delta [ppm] mult. atoms assignment
1.24-1.45 m 10 H 4-H, 5-H, 6-H, 7-H, 8-H
1.57 m 2 H 3-H
1.70 m 1 H 9-H
1.82 m 1 H 9-H
2.27 t 2 H 2-H
2.30 m 2 H 3-H (ring)
2.50 m 2 H 4-H (ring)
3.67 s 3 H O-CH3
4.48 m 1 H 2-H (ring)

NMR XXX

13C NMR

13C NMR

13C-NMR: 9-(5-Oxotetrahydrofuran-2-yl)nonanoic acid methyl ester
125.7 MHz, CDCl3
delta [ppm] assignment
24.9 C3
25.2 C9
28.0-29.2 C4, C5, C6, C7, C8, C3 (ring)
34.0 C2
35.5 C4 (ring)
51.4 O-CH3
81.0 C2 (ring)
174.2 C1 (O-C(=O)-)
177.2 C5 (O-C(=O)-, ring)
76.5-77.5 CDCl3

13C XXX

IR

IR

IR: 9-(5-Oxotetrahydrofuran-2-yl)nonanoic acid methyl ester
[Film, T%, cm-1]
[cm-1] assignment
2931, 2856 aliph. C-H valence
1776 C=O valence, lactone
1737 C=O valence, ester

 

 

 

10-Undecenoic acid methyl ester + Iodoacetic acid ethyl ester
Cu
reacts to
9-(5-Oxotetrahydrofuran-2-yl)nonanoic acid methyl ester + Iodoethane

Synthesis of 9-(5-oxotetrahydrofuran-2-yl)nonanoic acid methyl ester

Reaction type: addition to alkenes, radical reaction, ring closure reaction
Substance classes: alkene, halogencarboxylic acid ester, lactone
Techniques: working with cover gas, stirring with magnetic stir bar, heating under reflux, evaporating with rotary evaporator, filtering, recrystallizing, heating with oil bath
Degree of difficulty: Easy

 

Operating scheme

Operating schemeInstructions

http://www.oc-praktikum.de/nop/en/instructions/pdf/4005_en.pdf

Instruction (batch scale 100 mmol)

Equipment 250 mL two-neck flask, protective gas supply, reflux condenser, heatable magnetic stirrer, magnetic stir bar, rotary evaporator, Buechner funnel, suction flask, desiccator, oil bath Substances undecenoic acid methyl ester (bp 248 °C) 19.8 g (22.3 mL, 100 mmol) iodoacetic acid ethyl ester (bp 73-74 °C/ 21 hPa) 27.8 g (15.4 mL, 130 mmol) copper powder (finely powdered, >230 mesh ASTM) 30.5 g (480 mmol) tert-butyl methyl ether (bp 55 °C) 130 mL petroleum ether (bp 60-80 °C) 300 mL Reaction In a 250 mL two-neck flask with magnetic stir bar and a reflux condenser connected with a protective gas piping 19.8 g (22.3 mL, 100 mmol) undecenoic acid methyl ester and 27.8 g (15.4 mL, 130 mmol) iodoacetic acid ethyl ester are mixed with 30.5 g (480 mmol) copper powder under a protective gas atmosphere. Afterwards the reaction mixture is stirred at 130 °C oil bath temperature under protective gas for 4 hours. (Reaction monitoring see Analytics.)

Work up The reaction mixture is cooled down to room temperature, 30 mL tert-butyl methyl ether are added, the mixture is stirred for 5 minutes and filtered off. The copper powder on the filter is washed four times with 25 mL tert-butyl methyl ether each. Filtrates and wash solutions are combined, the solvent is evaporated at the rotary evaporator. A yellow oil remains as crude product. Crude yield: 25.4 g.

The crude product is dissolved in 300 mL petroleum ether under reflux. The solution is allowed to cool down to room temperature, then it is stored in the refrigerator over night for complete crystallization. The crystalline product is sucked off over a Buechner funnel and dried in the vacuum desiccator. The mother liquor is stored again in the refrigerator for a check of complete crystallization. Yield: 19.5 g (76.1 mmol, 76%); white solid, mp 34 °C Comments In order to achieve a quantitative reaction within 4 hours, a fivefold excess of copper is used.

Waste management Recycling The copper powder can be used three times.

Waste disposal Waste Disposal evaporated tert-butyl methyl ether (might contain iodoethane) organic solvents, containing halogen mother liquor from recrystallization organic solvents, containing halogen copper powder solid waste, free from mercury, containing heavy metals

Time 6-7 hours

Break After heating and before recrystallizing

Degree of difficulty Easy

Analytics Reaction monitoring with TLC Sample preparation: Using a Pasteur pipette, two drops of the reaction mixture are taken and diluted with 0.5 mL diethyl ether. TLC-conditions: adsorbant: TLC-aluminium foil (silica gel 60) eluent: petroleum ether (60/80) : acetic acid ethyl ester = 7 : 3 visualisation: The TLC-aluminium foil is dipped in 2 N H2SO4 and then dried with a hot air dryer. Reaction monitoring with GC Sample preparation: Using a Pasteur pipette, one drop of the reaction mixture is taken and diluted with 10 mL dichloromethane. From this solution, 0.2 µL are injected. 10 mg from the solid product are dissolved in 10 mL dichloromethane. From this solution, 0.2 µL are injected. GC-conditions: column: DB-1, 28 m, internal diameter 0.32 mm, film 0.25 µm inlet: on-column-injection carrier gas: hydrogen (40 cm/s) oven: 90 °C (5 min), 10 °C/min to 240 °C (40 min) detector: FID, 270 °C Percent concentration was calculated from peak areas.

Chromatogram

crude product chromatogram

GC: crude product
column DB-1, L=28 m, d=0.32 mm, film=0.25 µm
inlet on column injection, 0.2 µL
carrier gas H2, 40 cm/s
oven 90°C (5 min), 10°C/min –> 240°C (40 min)
detector FID, 270°C
integration percent concentration calculated from relative peak area

pure product chromatogram

GC: pure product
column DB-1, L=28 m, d=0.32 mm, film=0.25 µm
inlet on column injection, 0.2 µL
carrier gas H2, 40 cm/s
oven 90°C (5 min), 10°C/min –> 240°C (40 min)
detector FID, 270°C
integration percent concentration calculated from relative peak area

 

Substances required

Batch scale: 0.01 mol 0.1 mol 10-Undecenoic acid methyl ester
Educts Amount Risk Safety
10-Undecenoic acid methyl ester
19.8 g H- EUH- P-
Iodoacetic acid ethyl ester
GHS06 GHS05 Danger
27.8 g H300 H314 EUH- P264 P280 P305 + 351 + 338 P310
Reagents Amount Risk Safety
Copper powder
GHS09 Warning
30.5 g H400 EUH- P273
Solvents Amount Risk Safety
tert-Butyl methyl ether
GHS02 GHS07 Danger
130 mL H225 H315 P210
Petroleum ether (60-80)
GHS02 GHS08 GHS07 GHS09 Danger
300 mL H225 H304 H315 H336 H411 EUH- P210 P261 P273 P301 + 310 P331
Others Amount Risk Safety
Sulfuric acid 2N
GHS05 Danger
H314 H290 EUH- P280 P301 + 330 + 331 P305 + 351 + 338 P309 + 310
Solvents for analysis Amount Risk Safety
Petroleum ether (60-80)
GHS02 GHS08 GHS07 GHS09 Danger
H225 H304 H315 H336 H411 EUH- P210 P261 P273 P301 + 310 P331
Acetic acid ethyl ester
GHS02 GHS07 Danger
H225 H319 H336 EUH066 P210 P261 P305 + 351 + 338
Dichloromethane
GHS08 GHS07 Warning
H351 H315 H319 H335 H336 H373 P261 P281 P305 + 351 + 338

 

Substances produced

Batch scale: 0.01 mol 0.1 mol 10-Undecenoic acid methyl ester
Products Amount Risk Safety
9-(5-Oxotetrahydrofuran-2-yl)nonanoic acid methyl ester

Equipment

Batch scale: 0.01 mol 0.1 mol 10-Undecenoic acid methyl ester

 

two-necked flask 250 mL two-necked flask 250 mL protective gas piping protective gas piping
reflux condenser reflux condenser heatable magnetic stirrer with magnetic stir bar heatable magnetic stirrer with magnetic stir bar
rotary evaporator rotary evaporator suction filter suction filter
suction flask suction flask exsiccator with drying agent exsiccator with drying agent
oil bath oil bath

Simple evaluation indices

Batch scale: 0.01 mol 0.1 mol 10-Undecenoic acid methyl ester
Atom economy 53.9 %
Yield 76 %
Target product mass 19.5 g
Sum of input masses 370 g
Mass efficiency 53 mg/g
Mass index 19 g input / g product
E factor 18 g waste / g product

 

………………

………


Filed under: spectroscopy, SPOTLIGHT, SYNTHESIS Tagged: 9-(5-Oxotetrahydrofuran-2-yl)nonanoic acid methyl ester

Viewing all articles
Browse latest Browse all 1640

Trending Articles