Quantcast
Channel: DR ANTHONY MELVIN CRASTO Ph.D – New Drug Approvals
Viewing all articles
Browse latest Browse all 1640

GALETERONE

$
0
0

 

 

File:Galeterone.svg

Galeterone

SYNTHESIS COMING………..

A SARM potentially for the treatment of prostate cancer.

Research Code, TOK-001; VN; 124; 124-1; 1241

TOK-001; Galeterone; 851983-85-2; VN/124; UNII-WA33E149SW; VN/124-1;

CAS No. 851983-85-2(Galeterone)

(3S,8R,9S,10R,13S,14S)-17-(benzimidazol-1-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15-decahydro-1H-cyclopenta[a]phenanthren-3-ol

Molecular Formula: C26H32N2O
Molecular Weight: 388.54508 g/mol

 

Galeterone (TOK-001 or VN/124-1) is a novel steroidal antiandrogen under development by Tokai Pharmaceuticals for the treatment of prostate cancer. It possesses a unique dual mechanism of action, acting as both an androgen receptor antagonist and an inhibitor of CYP17A1, an enzyme required for the biosynthesis of the androgens.[1] It shows selectivity for 17,20-lyase over 17-hydroxylase.[2]

As of 2016, galeterone is being compared to enzalutamide in a phase III clinical trial (ARMOR3-SV) for AR-V7-expressing metastatic castration-resistant prostate cancer.[3][4]

Specific Androgen Receptor Modulator CYP17 Inhibitor TOK-001 is an orally bioavailable small-molecule androgen receptor modulator and CYP17 lyase inhibitor with potential antiandrogen activity. Galeterone exhibits three distinct mechanisms of action: 1) as an androgen receptor antagonist, 2) as a CYP17 lyase inhibitor and 3) by decreasing overall androgen receptor levels in prostate cancer tumors, all of which may result in a decrease in androgen-dependent growth signaling. Localized to the endoplasmic reticulum (ER), the cytochrome P450 enzyme CYP17 (P450C17 or CYP17A1) exhibits both 17alpha-hydroxylase and 17,20-lyase activities, and plays a key role in the steroidogenic pathway that produces progestins, mineralocorticoids, glucocorticoids, androgens, and estrogens.

About Galeterone

Tokai’s lead product candidate is galeterone, a highly-selective, oral small molecule with the potential to transform the treatment of prostate cancer. We are focusing our late-stage development of galeterone on the treatment of men with metastatic, castration-resistant prostate cancer, or CRPC, whose prostate tumor cells express the AR-V7 splice variant.


We are conducting ARMOR3-SV, a Phase 3 clinical trial of galeterone evaluating whether administration of galeterone results in a statistically significant increase in radiographic progression-free survival as compared to Xtandi® (enzalutamide), an oral therapy currently approved for the treatment of CRPC, in AR-V7 positive metastatic CRPC patients. ARMOR3-SV is the first pivotal trial in prostate cancer to employ a precision medicine approach for patient selection. For more information regarding ARMOR3-SV, click here.

Galeterone has been studied in over 250 subjects in Phase 1 and Phase 2 clinical trials, including in CRPC patients with and without the AR-V7 splice variant. In these trials, galeterone demonstrated good tolerability and showed clinically meaningful reductions in levels of prostate specific antigen, or PSA, a biochemincal marker used to evaluate prostate cancer patients for signs of response to therapy.

We are currently focusing our late-stage development of galeterone on AR-V7 positive metastatic CRPC patients because it represents an unmet need in prostate cancer and our precision medicine approach provides an efficient development path. Based on the data we and our collaborators have produced to date, we also believe there is rationale for the broader clinical exploration of galeterone in the future.


Galeterone acts by disrupting the androgen receptor signaling pathway. This pathway is activated by the binding of male hormones (also known as androgens), such as testosterone and dihydrotestosterone (DHT) to androgen receptors in prostate cancer cells.

Galeterone disrupts the activation of the androgen receptor pathway in three ways:

  • Androgen receptor degradation, which reduces the amount of androgen receptor protein in tumor cells. There are no currently marketed drugs whose mechanism of action entails degradation of the androgen receptor. Therefore, galeterone represents a potential first-in-class therapeutic opportunity.
  • CYP17 enzyme inhibition, which blocks the synthesis of testosterone. This mechanism has been validated clinically by Zytiga (abiraterone). Zytiga must be co-administered with the steroid prednisone in order to minimize the risk of a potentially fatal side effect called mineralocorticoid excess. Unlike Zytiga, galeterone has not been shown in clinical trials to cause mineralocorticoid excess and, as a result, does not require co-administration of steroids. As a result, we believe that galeterone may be easier to administer, provide convenience for patients and enhance patient compliance.
  • Androgen receptor inhibition, which blocks the binding of testosterone or DHT with the androgen receptor. This mechanism has been validated clinically by Xtandi® (enzalutamide), which is also currently approved for the treatment of CRPC. Xtandi™ has shown a risk of grand mal seizures in clinical trials. We have not had any reports of seizures in clinical trials of galeterone and, therefore, galeterone may have certain safety advantages over Xtandi.

 


Tokai retains global rights to galeterone. We intend to commercialize galeterone in the United States on our own, and to seek a partner to further develop and commercialize galeterone outside of the United States.

Galeterone has been granted Fast Track designation by U.S. Food and Drug Administration for the treatment of CRPC. Fast Track designation is designed to facilitate the development and expedite review of drugs intended to treat serious or life-threatening conditions and that demonstrate the potential to address unmet medical needs.

Androgen receptor degradation, which reduces the amount of androgen receptor protein in the tumor cells.

Androgen receptor antagonism, which blocks the binding of testosterone or DHT with the androgen receptor.

Inhibition of the enzyme CYP17, which blocks the synthesis of testosterone.

Figure 3: The structures of abiraterone, orteronel and galeterone.

From CYP17 inhibitors—abiraterone, C17,20-lyase inhibitors and multi-targeting agents

Nature Reviews Urology 11,32–42 (2014)
doi:10.1038/nrurol.2013.274
Discovery and Development of Galeterone (TOK-001 or VN/124-1)
for the Treatment of All Stages of Prostate Cancer…….http://pubs.acs.org/doi/pdf/10.1021/jm501239f
str1
str1
Patent ID Date Patent Title
US2011034428 2011-02-10 Treatment of Prostate Cancer
US7875599 2011-01-25 C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens, in vitro biological activities, pharmacokinetics and antitumor activity
US2010137269 2010-06-03 Novel C-17-Heteroaryl Steroidal Cyp17 Inhibitors/Antiandrogens: Synehesis, In Vitro Biological Activities, Pharmacokinetics and Antitumor Activity
US2010048914 2010-02-25 Novel C-17-Heteroaryl Steroidal Cyp17 Inhibitors/Antiandrogens, In Vitro Biological Activities, Pharmacokinetics and Antitumor Activity
US2010048913 2010-02-25 Novel C-17-Heteroaryl Steroidal CYP17 Inhibitors/Antiandrogens Synthesis In Vitro Biological Activities, Pharmacokinetics and Antitumor Activity
US2010048912 2010-02-25 Novel C-17-Heteroaryl Steroidal CYP17 Inhibitors/Antiandrogens, In Vitro Biological Activities, Pharmacokinetics and Antitumor Activity
US2010048524 2010-02-25 Novel C-17-Heteroaryl Steroidal CYP17 Inhibitors/Antiandrogens Synthesis In Vitro Biological Activities, Pharmacokinetics and Antitumor Activity
US2010047338 2010-02-25 Novel C-17-Heteroaryl Steroidal CYP17 Inhibitors/Antiandrogens, In Vitro Biological Activities, Pharmacokinetics and Antitumor Activity
Patent ID Date Patent Title
US2013336962 2013-12-19 AZIRIDINE BISPHENOL ETHERS AND RELATED COMPOUNDS AND METHODS FOR THEIR USE
US8569393 2013-10-29 UV-LED curable compositions and inks
US2013203615 2013-08-08 ANTIANDROGEN THERAPY MONITORING METHODS AND COMPOSITIONS
US2012309861 2012-12-06 PHOTOINITIATORS FOR UV-LED CURABLE COMPOSITIONS AND INKS
US2012237502 2012-09-20 METHOD FOR TREATING BREAST CANCER AND OVARIAN CANCER
US2011319369 2011-12-29 COMBINATION OF A 17 ALPHA-HYDROXYLASE/C17, 20-LYASE INHIBITOR WITH AN ADDITIONAL THERAPEUTIC AGENT
US2011312924 2011-12-22 NOVEL STEROIDAL CYP17 INHIBITORS/ANTIANDROGENS
US2011312916 2011-12-22 NOVEL PRODRUGS OF STEROIDAL CYP17 INHIBITORS/ANTIANDROGENS
US2011118219 2011-05-19 NOVEL PRODRUGS OF C-17-HETEROARYL STEROIDAL CYP17 INHIBITORS/ANTIANDROGENS: SYNTHESIS, IN VITRO BIOLOGICAL ACTIVITIES, PHARMACOKINETICS AND ANTITUMOR ACTIVITY
US2011105445 2011-05-05 ANDROGEN RECEPTOR INACTIVATION CONTRIBUTES TO ANTITUMOR EFFICACY OF CYP17 INHIBITORS IN PROSTATE CANCER
Patent ID Date Patent Title
US2015051179 2015-02-19 NOVEL STEROIDAL CYP17 INHIBITORS/ANTIANDROGENS
US2015005265 2015-01-01 METHODS AND COMPOSITIONS FOR COMBINATION THERAPY USING P13K/MTOR INHIBITORES
US2014371261 2014-12-18 INDOMETHACIN ANALOGS FOR THE TREATMENT OF CASTRATE-RESISTANT PROSTATE CANCER
US2014371181 2014-12-18 NOVEL PRODRUGS OF STEROIDAL CYP17 INHIBITORS/ANTIANDROGENS
US2014343024 2014-11-20 TREATMENT OF PROSTATE CANCER
US2014288037 2014-09-25 NOVEL COMPOSITIONS AND METHODS FOR TREATING PROSTATE CANCER
US2014288036 2014-09-25 NOVEL C-17-HETEROARYL STEROIDAL CYP17 INHIBITORS/ANTIANDROGENS, IN VITRO BIOLOGICAL ACTIVITIES, PHARMACOKINETICS AND ANTITUMOR ACTIVITY
US2014274983 2014-09-18 NOVEL PRODRUGS OF C-17-HETEROARYL STEROIDAL CYP17 INHIBITORS/ANTIANDROGENS: SYNTHESIS, IN VITRO BIOLOGICAL ACTIVITIES, PHARMACOKINETICS AND ANTITUMOR ACTIVITY
US2014107085 2014-04-17 Bifunctional AKR1C3 Inhibitors/Androgen Receptor Modulators and Methods of Use Thereof
US2013336962 2013-12-19 AZIRIDINE BISPHENOL ETHERS AND RELATED COMPOUNDS AND METHODS FOR THEIR USE

str1

References

 

Silberstein, John L.; Taylor, Maritza N.; Antonarakis, Emmanuel S. (2016-04-01). “Novel Insights into Molecular Indicators of Response and Resistance to Modern Androgen-Axis Therapies in Prostate Cancer”. Current Urology Reports 17 (4): 29. doi:10.1007/s11934-016-0584-4. ISSN 1534-6285. PMID 26902623.

 

Galeterone
Galeterone.svg
Systematic (IUPAC) name
17-(1H-benzimidazol-1-yl)androsta-5,16-dien-3β-ol
Clinical data
Routes of
administration
Oral
Identifiers
CAS Number 851983-85-2
PubChem CID 11188409
ChemSpider 9363493
KEGG D10125 Yes
Chemical data
Formula C26H32N2O
Molar mass 388.25

///////

C[C@]12CC[C@@H](CC1=CC[C@@H]3[C@@H]2CC[C@]4([C@H]3CC=C4N5C=NC6=CC=CC=C65)C)O

CC12CCC(CC1=CCC3C2CCC4(C3CC=C4N5C=NC6=CC=CC=C65)C)O


Filed under: Uncategorized Tagged: galeterone

Viewing all articles
Browse latest Browse all 1640

Trending Articles